Living material assembly of bacteriogenic protocells

  • van Stevendaal, MHME, van Hest, JCM & Mason, AF Functional interactions between ascending synthetic cells and living matter for biomedical applications. ChemSystemsChem 3e2100009 (2021).

    Google Scholar article

  • Jeong, S., Nguyen, HT, Kim, CH, Ly, MN, and Shin, K. Towards artificial cells: new advances in energy conversion and cell motility. Adv. Function Mater. 301907182 (2020).

    CAS Google Scholar Article

  • Toparlak, OD & Mansy, SS Advances in protocell synthesis. Exp. Biol. Med. 244304–313 (2018).

    Google Scholar article

  • Yewdall, NA, Mason, AF & van Hest, JCM Characteristics of living systems: towards the creation of artificial cells. Interface development 820180023 (2018).

    Google Scholar article

  • Adamala, KP, Martin-Alarcon, DA, Guthrie-Honea, KR & Boyden, ES Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9431–439 (2017).

    CAS Google Scholar Article

  • Deng, N.-N., Yelleswarapu, M., Zheng, L. & Huck, WTS Microfluidic assembly of monodisperse vesosomes as artificial cell models. JAC 139587–590 (2017).

    CAS Google Scholar Article

  • Weiss, M. et al. Sequential bottom-up assembly of synthetic cells mechanically stabilized by microfluidics. Nat. Mater. 1789–96 (2018).

    ADS CAS Article Google Scholar

  • Huang, X. et al. Interfacial assembly of protein-polymer nanoconjugates in stimuli-responsive biomimetic protocells. Nat. Common. 42239 (2013).

    Article on Google Scholar Ads

  • Li, M., Harbron, RL, Weaver, JVM, Binks, BP & Mann, S. Electrostatically-triggered membrane permeability in inorganic protocells. Nat. Chem. 5529-536 (2013).

    CAS Google Scholar Article

  • Marguet, M., Bonduelle, C. & Lecommandoux, S. Polymeric multicompartment systems: towards biomimetic cellular structure and function. Chem. Soc. Round. 42512-529 (2013).

    CAS Google Scholar Article

  • Niederholtmeyer, H., Chaggan, C. & Devaraj, NK Communication and quorum sensing in nonliving mimics of eukaryotic cells. Nat. Common. 95027 (2018).

    Article on Google Scholar Ads

  • Kumar, BVVSP, Patil, AJ & Mann, S. Enzyme-powered motility in floating organoclay/DNA protocells. Nat. Chem. ten1154-1163 (2018).

    CAS Google Scholar Article

  • Mukwaya, V. et al. Lectin-glycan-mediated nanoparticle docking as a step toward programmable membrane catalysis and adhesion in synthetic protocells. ACS Nano 147899–7910 (2020).

    CAS Google Scholar Article

  • Dou, H. et al. Higher-order assembly of crystalline cylindrical micelles into membrane-expandable colloidosomes. Nat. Common. 8426 (2017).

    Article on Google Scholar Ads

  • Martin, N. Dynamic synthetic cells based on liquid-liquid phase separation. ChimBioChem 202553-2568 (2019).

    CAS Google Scholar Article

  • Zhang, Y. et al. Giant coacervate vesicles as an integrated approach to cytomimetic modeling. JAC 1432866–2874 (2021).

    CAS Google Scholar Article

  • Tang, T.-YD et al. Assembly of fatty acid membranes on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6527–533 (2014).

    Google Scholar article

  • Koga, S., Williams, DS, Perriman, AW & Mann, S. Peptide-nucleotide microdroplets as a step towards a membraneless protocell model. Nat. Chem. 3720–724 (2011).

    CAS Google Scholar Article

  • Tang, T.-YD, van Swaay, D., deMello, A., Ross Anderson, JL & Mann, S. In vitro gene expression in coacervated membraneless protocells. Chem. Common. 5111429–11432 (2015).

    Google Scholar article

  • Li, M., Green, DC, Anderson, JLR, Binks, BP & Mann, S. In vitro gene expression and enzyme catalysis in bio-inorganic protocells. Chem. Science. 21739-1745 (2011).

    CAS Google Scholar Article

  • Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnology. 11409-420 (2016).

    Article on Google Scholar Ads

  • Strulson, CA, Molden, RC, Keating, CD & Bevilacqua, PC Catalysis of RNA by Compartmentalisation. Nat. Chem. 4941–946 (2012).

    CAS Google Scholar Article

  • Drobot, B. et al. Compartmentalized RNA catalysis in membraneless coacervate protocells. Nat. Common. 93643 (2018).

    Article on Google Scholar Ads

  • Faust, JE, Yang, P.-Y. & Huang, HW Action of antimicrobial peptides on bacterial and lipid membranes: a direct comparison. Biophys. J 1121663-1672 (2017).

    ADS CAS Article Google Scholar

  • Gray, LR, Tompkins, SC & Taylor, EB Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 712577-2604 (2014).

    CAS Google Scholar Article

  • Silverman, AD, Karim, AS & Jewett, MC Cellless gene expression: an expanded repertoire of applications. Nat. Reverend Genet. 21151-170 (2020).

    CAS Google Scholar Article

  • Lee, KY et al. Artificial photosynthetic organelles support and control ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36530–535 (2018).

    CAS Google Scholar Article

  • Fung, BM & Eyob, E. The effect of ATP concentration on the rate of actin polymerization. Camber. Biochemistry. Biophys. 220370–378 (1983).

    CAS Google Scholar Article

  • Nakashima, KK, Baaij, JF & Spruijt, E. Reversible generation of coacervate droplets in an enzymatic network. soft material 14361–367 (2018).

    ADS CAS Article Google Scholar

  • Memphin, R. et al. Release of extracellular ATP by bacteria during growth. BMC Microbiol. 13301 (2013).

    Google Scholar article

  • Alvarez, CL et al. Dynamic regulation of extracellular ATP in Escherichia coli. Biochemistry. J 4741395-1416 (2017).

    CAS Google Scholar Article

  • Donau, C. et al. Active coacervation droplets as a model for membraneless organelles and protocells. Nat. Common. 115167 (2020).

    ADS CAS Article Google Scholar

  • Moreau, NG, Martin, N., Gobbo, P., Tang, TYD, and Mann, S. Spontaneous membraneless multi-compartmentation via aqueous two-phase separation in complex coacervate microdroplets. Chem. Common. 5612717–12720 (2020).

    CAS Google Scholar Article

  • Skruzny, M. et al. Molecular basis of plasma membrane coupling to the actin cytoskeleton during clathrin-mediated endocytosis. proc. Natl Acad. Science. UNITED STATES 109E2533–E2542 (2012).

    ADS CAS Article Google Scholar

  • Bosnea, LA, Moschakis, T. & Biliaderis, CG Complex coacervation as a novel microencapsulation technique to improve probiotic viability under different stresses. Food bioprocess technology. seven2767–2781 (2014).

    CAS Google Scholar Article

  • Florea, M. et al. Engineering control of bacterial cellulose production using a genetic toolbox and a new cellulose-producing strain. proc. Natl Acad. Science. UNITED STATES 113E3431–E3440 (2016).

    CAS Google Scholar Article

  • Linger, JG, Adney, WS & Darzins, A. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl. About. Microbiol. 766360–6369 (2010).

    ADS CAS Article Google Scholar

  • Thakur, S., Weir, BS & Guttman, DS Plant Pathogen Genome Announcement: Draft Genome Sequences of 62 Pseudomonas syringae type and pathotype strains. Mol. Plant Microbe Interact. 29243-246 (2016).

  • Costales, MG et al. A small molecule inhibitor designed from a non-coding RNA sensitizes HER2-negative cancers to herceptin. Jam. Chem. Soc. 1412960-2974 (2019).

  • Wiechelman, KJ, Braun, RD & Fitzpatrick, JD Investigation of the bicinchoninic acid protein assay: identification of groups responsible for color formation. Anal. Biochemistry. 175231-237 (1988).

  • Drescher, HK et al. I-Selectin/CD62L is a key factor in non-alcoholic steatohepatitis in mice and humans. cells 91106 (2020).

  • Jung, Y. et al. Metabolic signature genes associated with pyruvate kinase sensitivity, muscle type 2 gene ablation in cancer cells. Mol. cells 35335–341 (2013).

  • Chiu, J., March, PE, Lee, R. & Tillett, D. Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res. 32e174 (2004).

  • Berkson, J. Application of the logistic function to bioassay. Jam. Statistics Assoc. 39357–365 (1944).

    CAS Google Scholar

  • Wittrup, KD & Bailey, JE A single cell assay of β-galactosidase activity in Saccharomyces cerevisiae. Cytometry 9394–404 (1988).

    CAS Google Scholar Article

  • Spoelstra, WK, van der Sluis, EO, Dogterom, M. & Reese, L. Non-spherical coacervate forms in an active enzyme-driven system. Langmuir 361956-1964 (2020).

    CAS Google Scholar Article

  • Comments are closed.